MultiView High Precision VLBI Astrometry at Low Frequencies

2017 
The arrival of the Square Kilometer Array (SKA) will revitalise all aspects of Very Long Baseline Interferometry (VLBI) astronomy at the lower frequencies. In the last decade there have been huge strides towards routinely achieving high precision VLBI astrometry at frequencies dominated by the tropospheric contributions, most notably at 22GHz, using advanced phase referencing techniques. Nevertheless to increase the capability for high precision astrometric measurements at low radio frequencies (<8GHz) an effective calibration strategy of the systematic ionospheric propagation effects that is widely applicable is required. Observations at low frequencies are dominated by distinct direction dependent ionospheric propagation errors, which place a very tight limit on the angular separation of a suitable phase referencing calibrator. The MultiView technique holds the key to the compensation of atmospheric spatial-structure errors, by using observations of multiple calibrators and 2-D interpolation. In this paper we present the first demonstration of the power of MultiView using three calibrators, several degrees from the target, along with a comparative study of the astrometric accuracy between MultiView and phase-referencing techniques. MultiView calibration provides an order of magnitude improvement in astrometry with respect to conventional phase referencing, achieving ca. 100 micro-arcseconds astrometry errors in a single epoch of observations, effectively reaching the thermal noise limit. MultiView will achieve its full potential with the enhanced sensitivity and multibeam capabilities of SKA and the pathfinders, which will enable simultaneous observations of the target and calibrators. Our demonstration indicates that the 10 micro-arcseconds goal of astrometry at ~1.6GHz using VLBI with SKA is feasible using the MultiView technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    22
    Citations
    NaN
    KQI
    []