A Dirichlet-to-Neumann finite element method for axisymmetric elastostatics in a semi-infinite domain

2017 
The Dirichlet-to-Neumann finite element method (DtN FEM) has proven to be a powerful numerical approach to solve boundary-value problems formulated in exterior domains. However, its application to elastic semi-infinite domains, which frequently arise in geophysical applications, has been rather limited, mainly due to the lack of explicit closed-form expressions for the DtN map. In this paper, we present a DtN FEM procedure for boundary-value problems of elastostatics in semi-infinite domains with axisymmetry about the vertical axis. A semi-spherical artificial boundary is used to truncate the semi-infinite domain and to obtain a bounded computational domain, where a FEM scheme is employed. By using a semi-analytical procedure of solution in the unbounded residual domain lying outside the artificial boundary, the exact nonlocal boundary conditions provided by the DtN map are numerically approximated and efficiently coupled with the FEM scheme. Numerical results are provided to demonstrate the effectiveness and accuracy of the proposed method. A numerical method for elasticity in axisymmetric semi-infinite domains is proposed.The method couples finite elements with Dirichlet-to-Neumann boundary conditions.The lack of an explicit closed-form expression for the DtN map needs to be overcome.This is done by using a procedure that combines analytical and numerical techniques.The numerical experiments confirm the effectiveness and accuracy of the method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []