An optimized power conversion system concept of the integral, inherently-safe light water reactor

2017 
Abstract The integral, inherently safe light water reactor (I 2 S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I 2 S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I 2 S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I 2 S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    10
    Citations
    NaN
    KQI
    []