Multidimensional Conductive Nanofilm-Based Flexible Aptasensor for Ultrasensitive and Selective HBsAg Detection
2018
Hepatitis B virus (HBV) infection is a major worldwide health issue causing serious liver diseases, including liver cirrhosis and hepatocellular carcinoma. Monitoring the serum hepatitis B surface antigen (HBsAg) level is pivotal to the diagnosis of HBV infection. In this study, we describe multidimensional conductive nanofilm (MCNF)-based field-effect transistor (FET) aptasensor for HBsAg detection. The MCNF, composed of vertically oriented carboxylic polypyrrole nanowires (CPPyNW) and graphene layer, is formed using electropolymerization of pyrrole on the graphene surface and following acid treatment. The amine-functionalized HBsAg-binding aptamers are then immobilized on the CPPyNW surface through covalent bonding formation (i.e., amide group). The prepared aptasensor presents highly sensitive to HBsAg as low as 10 aM among interfering biomolecules with various deformations. Moreover, the MCNF-based aptasensor has great potential for practical application in the noninvasive real-time diagnosis because ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
17
Citations
NaN
KQI