Highly Stretchable Waterproof Fiber Asymmetric Supercapacitors in an Integrated Structure

2018 
Fiber supercapacitors have attracted tremendous attention as promising power source candidates for the next generation of wearable electronics, which are flexible, stretchable, and washable. Although asymmetric fiber supercapacitors with a high energy density have been achieved, their stretchability is no more than 200%, and they still face mechanical instability and an unreliable waterproof structure. This work develops a highly integrated structure for a waterproof, highly stretchable, and asymmetric fiber-shaped supercapacitor, which is assembled by integrating a helix-shaped asymmetric fiber supercapacitor into a bifunctional polymer. The asymmetric fiber supercapacitor demonstrates a working voltage of 1.6 V, a high energy density of 2.86 mW h/cm3, has unchanged capacitance after being immersed in water for 50 h, and retains 95% of its initial capacitance after 3000 cycles of stretching–releasing at a maximum strain of 400%. The extraordinary waterproof capability, the large stretching strain, and ex...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    21
    Citations
    NaN
    KQI
    []