One-repetition maximum bench press performance estimated with a new accelerometer method.
2010
The one repetition maximum (1RM) is an important method to measure muscular strength. The purpose of this study was to evaluate a new method to predict 1RM bench press performance from a submaximal lift. The developed method was evaluated by using different load levels (50, 60, 70, 80, and 90% of 1RM). The subjects were active floorball players (n = 22). The new method is based on the assumption that the estimation of 1RM can be calculated from the submaximal weight and the maximum acceleration of the submaximal weight during the lift. The submaximal bench press lift was recorded with a 3-axis accelerometer integrated to a wrist equipment and a data acquisition card. The maximum acceleration was calculated from the measurement data of the sensor and analyzed in personal computer with LabView-based software. The estimated 1RM results were compared with traditionally measured 1RM results of the subjects. An own estimation equation was developed for each load level, that is, 5 different estimation equations have been used based on the measured 1RM values of the subjects. The mean (±SD) of measured 1RM result was 69.86 (±15.72) kg. The mean of estimated 1RM values were 69.85-69.97 kg. The correlations between measured and estimated 1RM results were high (0.89-0.97; p < 0.001). The differences between the methods were very small (-0.11 to 0.01 kg) and were not significantly different from each other. The results of this study showed promising prediction accuracy for estimating bench press performance by performing just a single submaximal bench press lift. The estimation accuracy is competitive with other known estimation methods, at least with the current study population.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
13
References
33
Citations
NaN
KQI