Study of microstructural and mechanical properties of weld heat affected zones of 2024-T3 aluminium using Gleeble simulation

2011 
AbstractThe effect of the microstructural properties on the mechanical properties of welding thermal cycles and post-weld heat treatment of the heat affected zone (HAZ) in 2024-T3 aluminium alloy has been investigated. Gleeble HAZ simulation, differential scanning calorimetry, TEM and tensile test have been utilised to investigate the regions representative of HAZ microstructures. The decay of strength in the weld HAZ is primarily due to the precipitation and coarsening of stable S phases. The welded HAZ in the region at peak temperature of 414°C has the lowest strength after natural aged temper. Post-weld T81 artificial aging (PWAA-T81) heat treatment at 190°C for 12 h has no effect on improving the HAZ strength; the HAZ strength of 2024-T3 alloy obtained by PWAA-T81 treatment is less than that obtained by natural aging, and its lowest strength is shifted to the region of the peak temperature, which is 452°C. Scanning electron microscopy observation reveals that the fracture mode changes from transgranul...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    10
    Citations
    NaN
    KQI
    []