FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: Photooxidation of the primary electron donor

2012 
Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000–1200 cm−1. The light-induced P+QA−/PQA IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P+QA−/PQA FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ∼2650 and ∼2200 cm−1, as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294–1285 cm−1, indicates that the radical cation P+ in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P+ absorbance band at ∼1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ∼2650 cm−1, is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P+ dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 131-keto C=O groups of PA and PB molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 31-acetyl C=O group of PB forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm−1. Differential signals at 1757(+)/1749(−) and 1741(+)/1733(−) cm−1 in the FTIR spectrum of C. aurantiacus RCs are attributed to the 133-ester C=O groups of P in different environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    3
    Citations
    NaN
    KQI
    []