Classical restrictions of generic matrix product states are quasi-locally Gibbsian

2020 
We show that the norm squared amplitudes with respect to a local orthonormal basis (the classical restriction) of finite quantum systems on one-dimensional lattices can be exponentially well approximated by Gibbs states of local Hamiltonians (i.e., are quasi-locally Gibbsian) if the classical conditional mutual information (CMI) of any connected tripartition of the lattice is rapidly decaying in the width of the middle region. For injective matrix product states, we moreover show that the classical CMI decays exponentially, whenever the collection of matrix product operators satisfies a 'purity condition'; a notion previously established in the theory of random matrix products. We furthermore show that violations of the purity condition enables a generalized notion of error correction on the virtual space, thus indicating the non-generic nature of such violations. The proof of our main result makes extensive use of the theory of random matrix products, and may find applications elsewhere.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []