Double debiased machine learning nonparametric inference with continuous treatments

2019 
We propose a nonparametric inference method for causal effects of continuous treatment variables, under unconfoundedness and in the presence of high-dimensional or nonparametric nuisance parameters. Our double debiased machine learning (DML) estimators for the average dose-response function (or the average structural function) and the partial effects are asymptotically normal with nonparametric convergence rates. The nuisance estimators for the conditional expectation function and the conditional density can be nonparametric kernel or series estimators or ML methods. Using a kernel-based doubly robust influence function and cross-fitting, we give tractable primitive conditions under which the nuisance estimators do not affect the first-order large sample distribution of the DML estimators. We justify the use of kernel to localize the continuous treatment at a given value by the Gateaux derivative. We implement various ML methods in Monte Carlo simulations and an empirical application on a job training program evaluation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    30
    Citations
    NaN
    KQI
    []