Effects of simulated microgravity on rice (MR219) growth and yield

2018 
Rice ( Oryza sativa L.) is a staple food in many Asian countries with an ever increasing demand. However, the production of high quality rice seeds is insufficient to meet this demand. Research on plant growth in space related to the exposure of a microgravity environment are rare, costly and time-limited. Similar experiments can be conducted on the ground to simulate the microgravity condition using a 2-D clinostat which compensates for the unilateral influence of gravity. This study was conducted to establish a simple and cost effective technique to enhance the quality of the Malaysian rice seed variety MR 219 by using a 2-D clinostat and to determine the effects of simulated microgravity on the growth and yield of the rice seeds. The experiments were performed at different rotation speeds (2 rpm and 10 rpm) for 10 days at room temperature. The rice growth and yield parameters were measured every 2 weeks and at harvest time (day 110), respectively.  The data were analysed using the MINITAB statistical software package. The mean value estimates of the parameters obtained under different conditions were compared using analysis of variance (ANOVA) with the Tukey test for multiple comparisons using a 0.05 significance level. Significant differences in the number of tiller, stem width , chlorophyll content , weight of grains and panicles and total grain weight per plant were identified at rotation speed 10 rpm  when compared to rotation speed 2 rpm and control. The highest means were mainly obtained under 10 rpm clinorotated rice seeds. In general, plants grown from 10 rpm clinorotated seeds are also more resistant to rice diseases (rice blast disease, rice tungro disease and hopper burn). These results suggest that simulated microgravity using a 2-D clinostat affected several rice (MR219) growth and yield parameters significantly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []