Bio-inspired hydrophobicity promotes CO 2 reduction on a Cu surface

2019 
The aqueous electrocatalytic reduction of CO2 into alcohol and hydrocarbon fuels presents a sustainable route towards energy-rich chemical feedstocks. Cu is the only material able to catalyse the substantial formation of multicarbon products (C2/C3), but competing proton reduction to hydrogen is an ever-present drain on selectivity. Here, a superhydrophobic surface was generated by 1-octadecanethiol treatment of hierarchically structured Cu dendrites, inspired by the structure of gas-trapping cuticles on subaquatic spiders. The hydrophobic electrode attained a 56% Faradaic efficiency for ethylene and 17% for ethanol production at neutral pH, compared to 9% and 4% on a hydrophilic, wettable equivalent. These observations are assigned to trapped gases at the hydrophobic Cu surface, which increase the concentration of CO2 at the electrode–solution interface and consequently increase CO2 reduction selectivity. Hydrophobicity is thus proposed as a governing factor in CO2 reduction selectivity and can help explain trends seen on previously reported electrocatalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    158
    Citations
    NaN
    KQI
    []