Mechanism and impact of synthesis conditions on the one-step green synthesis of hybrid RGO@Fe/Pd nanoparticles

2020 
Abstract While a one-step green synthesis of a hybrid material composed of reduced graphene oxide and bimetallic Fe/Pd nanoparticles (RGO@Fe/Pd NPs) was previously successfully reported and evaluated for the removal of organic contaminants, the relationship between the formation of RGO@Fe/Pd and the resulting reactivity was unclear. In this paper the impact of the specific synthetic conditions on the reactivity of RGO@Fe/Pd was investigated in order to enhance the removal efficiency of antibiotics such as rifampicin. The hybrid material (RGO@Fe/Pd) successfully removed 96.1% of rifampicin compared to only 63.5 and 81.0% for Fe nanoparticles and RGO, respectively. The best synthetic conditions for the formation of RGO@Fe/Pd included GO/Fe = 1:1 and Fe/Pd = 100: 5. In addition, GC–MS and FTIR were used to identify the main reducing biomolecules in the green tea extract responsible for the one-step synthesis of RGO@Fe/Pd as Catechol, Caffeine, 1,3,5-Benzenetriol. The morphology, size and surface composition of RGO@Fe/Pd was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-Ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These advanced characterization techniques suggested that during synthesis GO was initially converted to RGO, and thereafter Fe/Pd NPs (10–50 nm) were dispersed on RGO. Finally, a plausible formation mechanism for the one-step synthesis of the hybrid material was proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    6
    Citations
    NaN
    KQI
    []