Nano-Crystalline Li1.2Mn0.6Ni0.2O2 Prepared via Amorphous Complex Precursor and Its Electrochemical Performances as Cathode Material for Lithium-Ion Batteries

2016 
An amorphous complex precursor with uniform Mn/Ni cation distribution is attempted for preparing a nano-structured layered Li-rich oxide (Li1.2Mn0.6Ni0.2O2)cathode material, using diethylenetriaminepentaacetic acid (DTPA) as a chelating agent. The materials are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests. The crystal structure of Li-rich materials is found to be closely related to synthesis temperature. As-obtained nano materials sintered at 850 °C for 10 h show an average size of 200 nm with a single crystal phase and good crystallinity. At a current density of 20 mA·g−1, the specific discharge capacity reaches 221 mAh·g−1 for the first cycle and the capacity retention is 81% over 50 cycles. Even at a current density of 1000 mA·g−1, the capacity is as high as 118 mAh·g−1. The enhanced rate capability can be ascribed to the nano-sized morphology and good crystal structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    13
    Citations
    NaN
    KQI
    []