The Unreasonable Effectiveness of Bitstrings in Logical Geometry

2017 
This paper presents a unified account of bitstrings—i.e. sequences of bits (0/1) that serve as compact semantic representations—for the analysis of Aristotelian relations and provides an overview of their effectiveness in three key areas of the Logical Geometry research programme. As for logical effectiveness, bitstrings allow a precise and positive characterisation of the notion of logical independence or unconnectedness, as well as a straightforward computation—in terms of bitstring length and level—of the number and type of Aristotelian relations that a particular formula may enter into. As for diagrammatic effectiveness, bitstrings play a crucial role in studying the subdiagrams of the Aristotelian rhombic dodecahedron, and different types of Aristotelian hexagons turn out to require bitstrings of different lengths. The linguistic and cognitive effectiveness of bitstring analysis relates to the scalar structure underlying the bitstrings, and to the difference between linear and non-linear bitstrings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    12
    Citations
    NaN
    KQI
    []