Surface-Tailored InP Nanowires via Self-Assembled Au Nanodots for Efficient and Stable Photoelectrochemical Hydrogen Evolution.

2021 
With a band gap close to the Shockley-Quiesser limit and excellent conduction band alignment with the water reduction potential, InP is an ideal photocathode material for photoelectrochemical (PEC) water reduction. Here, we develop facile self-assembled Au nanodots based on dewetting phenomena as a masking technique to fabricate wafer-scale InP nanowires (NWs) via a top-down approach. In addition, we report dual-function wet treatment using sulfur-dissolved oleylamine (S-OA) to remove a plasma-damaged surface in a controlled manner and stabilize InP NWs against surface corrosion in harsh electrolyte solutions. The resulting InP NW photocathodes exhibit an excellent photocurrent density of 33 mA/cm2 under 1 sun illumination in 1 M HCl with a highly stabilized performance without needing additional protection layers. Our approach combining large-area NW fabrication and surface engineering synergistically enhances light harvesting and PEC performance and stability, thereby providing a pathway for the development of efficient and durable InP photoelectrodes in a scalable manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []