Off-resonant emission of photon pairs in nonlinear optical cavities

2018 
Cavity-assisted spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing (SFWM) in nonlinear optical materials are practical and versatile methods to generate narrowband time-energy entangled photon pairs. Time-energy entangled photons with tailored spectro-temporal properties are particularly useful for efficient quantum optical interfaces. In this work we study the generation of photon pairs in cavity-assisted SPDC and SFWM for the general case of off-resonant conversion, namely, when the frequencies of the generated photons do not match the cavity resonances. Such a frequency mismatch in particular depends on temperature and requires an additional control in the experiment. First, we propose a generic model, for description of cavity-assisted SPDC and SFWM. We show that in both processes the mismatch reduces the generation rate of photons, distorts the spectrum and the auto-correlation function of the generated fields, as well as affects the photon generation dynamics. Second, we verify the results experimentally using parametric generation of photon pairs in a nonlinear whispering gallery mode resonator (WGMR) as an experimental platform with controlled frequency mismatch. Our work reveals the role of the frequency mismatch in the photon generation process and shows a way to control it. Obtained results constitute one more step in the direction of full control over the spectro-temporal properties of entangled photon pairs and the heralded generation of single-photon pulses with a tailored temporal mode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []