Crystallographic anisotropy in surface properties of brass and its dependence on the electron work function

2018 
The crystallographic anisotropy of the electric current or conductance, adhesive force, elastic modulus, and deformation magnitude of alpha brass were investigated through property mapping using an atomic force microscope. Surface electron work functions of differently oriented grains in the brass were also analyzed using atomic force microscopy. The mapped surface properties are closely related to the electron work function; the work function reflects the surface activity, which is itself dependent on the surface energy. The anisotropy of the properties is closely correlated to the in situ measured surface electron work function. It is demonstrated that crystallographic planes with higher electron work functions exhibit lower current, smaller adhesive forces, larger elastic moduli and smaller deformation magnitudes. Efforts are made to understand the relationships by connecting the properties with surface energy and electron work function. The dependence of the properties on crystallographic orientation can be elucidated by considering the surface electron behavior using electron work function as a novel probing parameter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []