Protein-repellent and antibacterial effects of a novel polymethyl methacrylate resin

2018 
Abstract Objectives Heat-cured resins are commonly used in orthodontics; however, there is a high incidence of caries, periodontal diseases and denture-induced stomatitis. The objectives of this study were to: (1) develop a new bioactive polymethyl methacrylate (PMMA) resin containing 2-methacryloyloxyethyl phosphorylcholine (MPC) and quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM), and (2) investigate the effects on mechanical properties, protein-repellency and antibacterial properties. Methods MPC and DMAHDM were mixed into a commercial acrylic resin (Nature Cryl™ MC). Mechanical properties were measured in three-point flexure. Surface roughness was assessed using atomic force microscopy (AFM). Protein adsorption onto the PMMA resin was measured using a micro bicinchoninic acid (BCA) method. A human saliva microcosm model was used to investigate the live/dead staining and metabolic activity of the biofilms. Results Incorporation of 3% MPC and 1.5% DMAHDM into PMMA resin achieved protein repellent and antibacterial capabilities, without compromising the mechanical properties. PMMA resin with 3% MPC + 1.5% DMAHDM had protein adsorption that was 1/6 that of a commercial control (p  Conclusions A bioactive PMMA resin with a combination of strong protein-repellent and antibacterial capabilities was developed for the first time. The new resin greatly reduced the biofilm growth and metabolic activity, without compromising its mechanical properties. Significance Novel PMMA resin is promising for applications in orthodontic retainers and orthodontic appliances to reduce biofilm activity and protein adsorption around the resin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    15
    Citations
    NaN
    KQI
    []