Penetrating glassy carbon neural electrode arrays for brain-machine interfaces.

2020 
This paper presents a fabrication method for glassy carbon neural electrode arrays that combines 3D printing and chemical pyrolysis technology. The carbon electrodes have excellent biological compatibility and can be used in neural signal recording. A pretreated Si wafer is used as the substrate for 3D printing, and then, stereolithography 3D printing technology is employed to print photosensitive resin into a cone shape. Next, chemical pyrolysis is applied to convert the 3D prints into glassy carbon electrodes and modify the electrochemical performance of the carbon electrodes. Finally, the glassy carbon electrodes are packed with conductive wires and PDMS. The proposed fabrication method simplifies the manufacturing process of carbon materials, and electrodes can be fabricated without the need of deep reactive ion etching (DRIE). The height of the carbon electrodes is 1.5 mm, and the exposure area of the tips is 0.78 mm2, which is convenient for the implantation procedure. The specific capacitance of the glassy carbon arrays is higher than that of a platinum electrode (9.18 mF/cm2 vs 3.32 mF/cm2, respectively), and the impedance at 1 kHz is lower (7.1 kΩ vs 8.8 kΩ). The carbon electrodes were tested in vivo, and they showed excellent performance in neural signal recording. The signal-to-noise ratio of the carbon electrodes is 50.73 ± 6.11, which is higher than that of the Pt electrode (20.15 ± 5.32) under the same testing conditions. The proposed fabrication method of glassy carbon electrodes provides a novel approach to manufacture penetrating electrodes for nerve interfaces in biomedical engineering and microelectromechanical systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []