Phylogenomic analysis reveals multiple evolutionary origins of selfing from outcrossing in a lineage of heterostylous plants

2019 
Evolutionary transitions from outcrossing to selfing often occur in heterostylous plants. Selfing homostyles originate within distylous populations and frequently evolve to become reproductively isolated species. We investigated this process in 10 species of Primula section Obconicolisteri using phylogenomic approaches and inferred how often homostyly originated from distyly and its consequences for population genetic diversity and floral trait evolution. We estimated phylogenetic relationships and reconstructed character evolution using the whole plastome comprised of 76 protein‐coding genes. To investigate mating patterns and genetic diversity we screened 15 microsatellite loci in 40 populations. We compared floral traits among distylous and homostylous populations to determine how phenotypically differentiated homostyles were from their distylous ancestors. Section Obconicolisteri was monophyletic and we estimated multiple independent transitions from distyly to homostyly. High selfing rates characterised homostylous populations and this was associated with reduced genetic diversity. Flower size and pollen production were reduced in homostylous populations, but pollen size was significantly larger in some homostyles than in distylous morphs. Repeated transitions to selfing in section Obconicolisteri are likely to have been fostered by the complex montane environments that species occupy. Unsatisfactory pollinator service is likely to have promoted reproductive assurance in homostyles leading to subsequent population divergence through isolation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    13
    Citations
    NaN
    KQI
    []