Testing Quantum Gravity with a Single Quantum System

2020 
Until recently, table-top tests of quantum gravity (QG) were thought to be practically impossible. However, due to a radical new approach to testing QG that uses principles of quantum information theory (QIT) and quantum technology, such tests now seem, remarkably, within sight. In particular, a promising test has been proposed where the generation of entanglement between two massive quantum systems, both in a superposition of two locations, would provide evidence of QG. In QIT, quantum information can be encoded in discrete variables, such as qubits, or continuous variables. The latter approach, called continuous-variable QIT (CVQIT), is extremely powerful as it has been very effective in applying QIT to quantum field theory. Here we apply CVQIT to QG, and show that another signature of QG would be the creation of non-Gaussianity, a continuous-variable resource that is necessary for universal quantum computation. In contrast to entanglement, non-Gaussianity can be applied to a single rather than multi-partite quantum system, and does not rely on local interactions. We use these attributes to describe a table-top test of QG that is based on just a single quantum system in a single location.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    13
    Citations
    NaN
    KQI
    []