Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata)
2006
Mitochondrial proton leak was assessed as a potential heat source in the slow, oxidative (red) locomotor muscle and liver of the shortfin mako shark ( Isurus oxyrinchus ), a regional endotherm that maintains the temperature of both tissues elevated above ambient seawater temperature. We hypothesized that basal proton leak rates in red muscle and liver mitochondria of the endothermic shortfin mako shark would be greater than those of the ectothermic blue shark ( Prionace glauca ) and leopard shark ( Triakis semifasciata ). Respiration rate and membrane potential in isolated mitochondria were measured simultaneously at 20°C using a Clark-type oxygen electrode and a lipophilic probe (triphenylmethylphosphonium, TPMP+). Succinate-stimulated respiration was titrated with inhibitors of the electron transport chain, and the non-linear relationship between respiration rate and membrane potential was quantified. Mitochondrial densities of both tissues were measured by applying the point-contact method to electron micrographs so that proton leak activity of the entire tissue could be assessed. In all three shark species, proton leak occurred at a higher rate in red muscle mitochondria than in liver mitochondria. For each tissue, the proton leak curves of the three species overlapped and, at a membrane potential of 160 mV, mitochondrial proton leak rate (nmol H+ min-1 mg-1 protein) did not differ significantly between the endothermic and ectothermic sharks. This finding indicates that red muscle and liver mitochondria of the shortfin mako shark are not specialized for thermogenesis by having a higher proton conductance. However, mako mitochondria did have higher succinate-stimulated respiration rates and membrane potentials than those of the two ectothermic sharks. This means that under in vivo conditions mitochondrial proton leak rates may be higher in the mako than in the ectothermic species, due to greater electron transport activity and a larger proton gradient driving proton leak. We also estimated each tissue's total proton leak by combining mitochondrial proton leak rates at 160 mV and tissue mitochondrial density data with published values of relative liver or red muscle mass for each of the three species. In red muscle, total proton leak was not elevated in the mako shark relative to the two ectothermic species. In the liver, total proton leak would be higher in the mako shark than in both ectothermic species, due to a lower proton conductance in the blue shark and a lower liver mitochondrial content in the leopard shark, and thus may contribute to endothermy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
24
Citations
NaN
KQI