Reaction-Driven Self-Assembled Micellar Nanoprobes for Ratiometric Fluorescence Detection of CS2 with High Selectivity and Sensitivity.

2016 
The detection of highly toxic CS2, which is known as a notorious occupational hazard in various industrial processes, is important from both environmental and public safety perspectives. We describe here a robust type of chemical-reaction-based supramolecular fluorescent nanoprobes for ratiometric determination of CS2 with high selectivity and sensitivity in water medium. The micellar nanoprobes self-assemble from amphiphilic pyrene-modified hyperbranched polyethylenimine (Py-HPEI) polymers with intense pyrene excimer emission. Selective sensing is based on a CS2-specific reaction with hydrophilic amino groups to produce hydrophobic dithiocarbamate moieties, which can strongly quench the pyrene excimer emission via a known photoinduced electron transfer (PET) mechanism. Therefore, the developed micellar nanoprobes are free of the H2S interference problem often encountered in the widely used colorimetric assays and proved to show high selectivity over many potentially competing chemical species. Importantl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    9
    Citations
    NaN
    KQI
    []