Weak turbulence effects on different beams carrying orbital angular momentum.

2021 
The study of beams carrying orbital angular momentum (OAM) has been of interest for its use in free-space optical communications (FSOC), directed energy applications, and remote sensing (RS). For FSOC and RS, it is necessary to measure the wavefront of the beam to recover transmitted or environmental information, respectively. In this computational study, common OAM beams such as the Laguerre–Gaussian (LG), Bessel–Gaussian (BG), and Bessel beams are propagated through atmospheric turbulence and compared to their Gaussian beam counterpart. The turbulence is simulated using multiple phase screens within the framework of a split-step method. Beam metrics used to quantify beam propagation will include the spatial coherence radius, OAM spectrum, on-axis intensity, spot size, divergence, and on-axis scintillation. Atmospheric turbulence along the path is limited to the weak scintillation limit, where beam parameters can be predicted analytically using the Rytov approximation. The results show that BG beams and multiplexed BG beams retain more OAM information than their LG and Bessel beam counterparts. The LG beam on-axis intensity and on-axis scintillation are seen to be independent of OAM mode. The scintillation of the LG beam is less than a BG, Bessel, and Gaussian beam across low- and high-order OAM modes. Insight into these results is discussed through studying the beam divergence, while the initial spot sizes of the Gaussian, LG, and BG beams are limited to the same spatial extent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []