Kinetic energy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size

2017 
ABSTRACTThe pattern and size of the Earth’s atmospheric circulation cells determine regional climates and challenge theorists. Here the authors present a theoretical framework that relates the size of meridional cells to the kinetic energy generation within them. Circulation cells are considered as heat engines (or heat pumps) driven by surface gradients of pressure and temperature. This approach allows an analytical assessment of kinetic energy generation in the meridional cells from the known values of surface pressure and temperature differences across the cell, and . Two major patterns emerge. First, the authors find that kinetic energy generation in the upper and lower atmosphere respond in contrasting ways to surface temperature: with growing , kinetic energy generation increases in the upper atmosphere but declines in the lower. A requirement that kinetic energy generation must be positive in the lower atmosphere can limit the poleward cell extension of the Hadley cells via a relationship between a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    9
    Citations
    NaN
    KQI
    []