Metabolic Volumetric Parameters in 11C-Choline PET/MR Are Superior PET Imaging Biomarkers for Primary High-Risk Prostate Cancer

2018 
Purpose. Positron emission tomography/magnetic resonance imaging (PET/MRI) can facilitate the use of noninvasive imaging biomarkers in clinical prostate cancer staging. Although multiparametric MRI is a widely used technique, the clinical value of simultaneous PET imaging remains unclear. This study aimed at investigating this issue. Methods. Between January 2015 and December 2016, 31 high-risk prostate cancer patients underwent 11C-choline PET/MRI for staging purposes. Clinical characteristics and imaging parameters, including the standardized uptake value (SUV) and metabolic volumetric parameters from PET imaging; apparent diffusion coefficient (ADC) values from diffusion-weighted imaging; and volume transfer rate constant (Ktrans), reflux rate constant (Kep), and initial area under curve (iAUC) in 60 seconds from dynamic contrast-enhanced (DCE) MRI were analyzed. Results. 11C-Choline PET imaging parameters were significantly correlated with prostate-specific antigen (PSA) levels, and metabolic volumetric parameters, including metabolic tumor volume (MTV) and uptake volume product (UVP), showed significant correlations with other MRI parameters. In our cohort analysis, the PET/MRI parameters UVP/minimal ADC value (ADCmin) and kurtosis of Kep (Kepkur)/ADCmin were significant predictors for progression-free survival (PFS) (HR = 1.01, 95% CI: 1.00–1.02, and HR = 1.09, 95% CI: 1.02–1.16, , respectively) in multivariate Cox regression analysis. High UVP/ADCmin and Kepkur/ADCmin values were significantly associated with shorter PFS. Conclusions. Metabolic volumetric parameters such as MTV and UVP can be routinely used as PET imaging biomarkers to add prognostic value and show better correlations in combination with MR imaging parameters in high-risk prostate cancer patients undergoing 11C-choline PET/MRI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    8
    Citations
    NaN
    KQI
    []