Fabrication, characterization, and simulation of glass devices with AlN-thin-film-transducers for excitation of ultrasound resonances

2020 
We present fabrication of 570-um-thick, millimeter-sized soda-lime-silicate float glass blocks with a 1-um-thick AlN-thin-film piezoelectric transducer sandwiched between thin metallic electrodes and deposited on the top surface. The electro-mechanical properties are characterized by electrical impedance measurements in the frequency range from 0.1 to 10 MHz with a peak-to-peak voltage of 0.5 V applied to the electrodes. We measured the electrical impedance spectra of 35 devices, all of width 2 mm, but with 9 different lengths ranging from 2 to 6 mm and with 2-7 copies of each individual geometry. Each impedance spectrum exhibits many resonance peaks, of which we carefully measured the 5 most prominent ones in each spectrum. We compare the resulting 173 experimental resonance frequencies with the simulation result of a finite-element-method model that we have developed. When using material parameters from the manufacturer, we obtain an average relative deviation of the 173 simulated resonance frequencies from the experimental ones of (-4.2 +/-0.04)%. When optimizing the values of the Young's modulus and the Poisson ratio of the float glass in the simulation, this relative deviation decreased to (-0.03 +/- 0.04)%. Our results suggest a method for an accurate in-situ determination of the acoustic parameters at ultrasound frequencies of any elastic solid onto which a thin-film transducer can be attached
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    0
    Citations
    NaN
    KQI
    []