Review of Calibration Methods for Scheimpflug Camera

2018 
The Scheimpflug camera offers a wide range of applications in the field of typical close-range photogrammetry, particle image velocity, and digital image correlation due to the fact that the depth-of-view of Scheimpflug camera can be greatly extended according to the Scheimpflug condition. Yet, the conventional calibration methods are not applicable in this case because the assumptions used by classical calibration methodologies are not valid anymore for cameras undergoing Scheimpflug condition. Therefore, various methods have been investigated to solve the problem over the last few years. However, no comprehensive review exists that provides an insight into recent calibration methods of Scheimpflug cameras. This paper presents a survey of recent calibration methods of Scheimpflug cameras with perspective lens, including the general nonparametric imaging model, and analyzes in detail the advantages and drawbacks of the mainstream calibration models with respect to each other. Real data experiments including calibrations, reconstructions, and measurements are performed to assess the performance of the models. The results reveal that the accuracies of the RMM, PLVM, PCIM, and GNIM are basically equal, while the accuracy of GNIM is slightly lower compared with the other three parametric models. Moreover, the experimental results reveal that the parameters of the tangential distortion are likely coupled with the tilt angle of the sensor in Scheimpflug calibration models. The work of this paper lays the foundation of further research of Scheimpflug cameras.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    11
    Citations
    NaN
    KQI
    []