Activation of brain-heart axis during REM sleep: a trigger for dreaming

2021 
Dreams may be recalled after awakening from sleep following a defined electroencephalographic pattern that involves local decreases in low-frequency activity in the posterior cortical regions. While a dreaming experience implies bodily changes at many organ-, system-, and timescale-levels, the entity and causal role of such peripheral changes in a conscious dream experience are unknown. We performed a comprehensive, causal, multivariate analysis of physiological signals acquired during REM sleep at night, including high-density EEG and peripheral dynamics including electrocardiography and blood pressure. In this preliminary study, we investigated multiple recalls and non-recalls of dream experiences using data from nine healthy volunteers. The aim was not only to investigate the changes in central and autonomic dynamics associated with dream recalls and non-recalls, but also to characterize the central-peripheral dynamical and (causal) directional interactions, and the temporal relations of the related arousals upon awakening. We uncovered a brain-body network that drives a conscious dreaming experience that acts with specific interaction and time delays. Such a network is sustained by the blood pressure dynamics and the increasing functional information transfer from the neural heartbeat regulation to the brain. We conclude that bodily changes play a crucial and causative role in a conscious dream experience during REM sleep.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []