Complexity of planning for connected agents

2020 
We study a variant of the multi-agent path finding (MAPF) problem in which the group of agents are required to stay connected with a supervising base station throughout the execution. In addition, we consider the problem of covering an area with the same connectivity constraint. We show that both problems are PSPACE-complete on directed and undirected topological graphs while checking the existence of a bounded plan is NP-complete when the bound is given in unary (and PSPACE-hard when the encoding is in binary). Moreover, we identify a realistic class of topological graphs on which the decision problem falls in NLOGSPACE although the bounded versions remain NP-complete for unary encoding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    0
    Citations
    NaN
    KQI
    []