Effect of Mg(OH)2 and sintering temperature on the hydration resistance of CaO aggregate by thermal decomposition

2019 
In spite of the advantages of CaO refractories, such as high refractoriness, potential to produce pure steel molten, and high alkaline corrosion resistance, their application has been limited due to its poor hydration resistance. Introducing additives to improve the hydration resistance of lime is a novel method. The influences of Mg(OH)2 and sintering temperatures on the sintering and hydration resistance of CaO aggregates that were produced by thermal decomposition were investigated in this paper. The purpose of this work was to produce high-purity CaO raw material with high density, low porosity, well grain growth, and good hydration resistance economically. The sintered samples were characterized by bulk density, apparent porosity, surface appearance, and microstructure. The results indicated that (1) Mg(OH)2 promoted the grain growth of CaO, reduced the apparent porosity, and improved the density of the specimens. The hydration resistance of the samples was increased. (2) Increasing the sintering temperature improved the hydration resistance of the specimens obviously in the experiment. (3) Grain size of CaO was more uniform with the increment of Mg(OH)2 content, and the density of the compacts was improved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []