LncRNA TONSL-AS1 participates in coronary artery disease by interacting with miR-197.

2021 
Abstract Background It has been reported that high expression levels of miR-197 can predict coronary artery disease (CAD). Our bioinformatics analysis showed that miR-197 may bind to long non-coding RNA (lncRNA) TONSL-AS1. This study aimed to investigate the role of TONSL-AS1 in CAD. Methods This study included 60 CAD patients and 60 healthy controls. Coronary angiography was performed to diagnose CAD. The interaction between TONSL-AS1 and miR-197 was predicted by IntaRNA2.0. Western-blot analysis was performed to illustrate the effect of MTONSL-AS1, miR-197 and BCL2 on human primary coronary artery endothelial cells (HCAECs). Cell migration assay was performed to explore the roles of MTONSL-AS1, miR-197 and BCL2 in regulating cell migration. Cell apoptosis assay was performed to investigate the role of MTONSL-AS1, miR-197 and BCL2 in regulating the apoptosis of HCAECs. Result Significant differences in high-density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and gensini score were observed in patients with CAD. In addition, TONSL-AS1 was downregulated in CAD. Follow-up study revealed that low expression levels of TONSL-AS1 and high expression levels of miR-197 predicted poor survival of CAD patients. Overexpression experiments showed that TONSL-AS1 and miR-197 had no significant effect on the expression of each other. We speculated that MAFG-AS1 may sponge miR-145. Moreover, overexpression of TONSL-AS1 increased, while overexpression of miR-197 decreased the expression levels of BCL2. Furthermore, overexpression of TONSL-AS1 attenuated the effects of overexpression of miR-197 on migration and apoptosis of HCAECs. Conclusions Therefore, the expression of TONSL-AS1 predicted the survival of CAD patients and it sponged miR-197 to inhibit the apoptosis of HCAECs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []