Anick's conjecture for spaces with decomposable Postnikov invariants

2004 
An elliptic space is one whose rational homotopy and rational cohomology are both finite dimensional. David Anick conjectured that any simply connected finite CW-complex S can be realized as the k-skeleton of some elliptic complex as long as k > dim S, or, equivalently, that any simply connected finite Postinkov piece S can be realized as the base of a fibration F-->E-->S where E is elliptic and F is k-connected, as long as the k is larger than the dimension of any homotopy class of S. This conjecture is only known in a few eases, and here we show that in particular if the Postnikov invariants of S are decomposable, then the Anick conjecture holds for S. We also relate this conjecture with other finiteness properties of rational spaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []