Adhesionless and near-ideal contact behavior of graphene on Cu thin film

2017 
Abstract Graphene coatings reduce surface adhesion owing to a low surface energy. In the present work, a single CVD-grown graphene layer on Cu is shown to modify the elastic contact behavior by eliminating adhesion. Nanoindentation load-displacement curves exhibit higher load bearing capacity for Cu/graphene in the elastic regime compared to bare Cu and a closer agreement with Hertz law. Molecular dynamics simulations confirm the quasi-absence of adhesion between graphene and indentor tip. These results open new opportunities regarding tribological issues related to coatings or MEMS applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []