Interaction of radiation-generated free radicals with collagen and metalloproteins using cesium-137 gamma source

1985 
Abstract The interaction of collagen and metalloproteins with radiation-generated radicals has been studied using spectrophotometric, chromatographic, and ESR techniques. The hydroxyl radical (·OH) reacted with and caused polymerization of acid soluble collagen. Similar reactions were also observed in a ferrimyoglobin and cytochrome C system. Insoluble collagen from bovine muscle subjected to radiation is followed by a first-order process for the decay of free radicals, depending on relative humidity of the system. When the samples were irradiated with 3 kGy at 25°C by a Cesium-137 Irradiator, the observed half life (hr) of free radicals in the samples decreased with increase of relative humidity RH: 31% > 69% > 100%. When collagen, previously kept dry or under 31% RH, was irradiated with 3 kGy at 77°K (-196°C), the decay of free radicals reached a plateau with annealing at -120°C or higher. The decay kept decreasing with annealing at -100°C or higher temperature when collagen maintained at 69 and 100% RH was used. It is concluded that the free radicals in moistened collagen from bovine muscle decreased at a higher rate than in dried collagen. This suggests that free radicals may persist for a longer period of time in irradiated dry proteins of food or animal feed than in foods of higher moisture extent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    9
    Citations
    NaN
    KQI
    []