Variable Neighbourhood Descent with Memory: A Hybrid Metaheuristic for Supermarket Resupply

2016 
Supermarket supply chains represent an area in which optimisation of vehicle routes and scheduling can lead to huge cost and environmental savings. As just-in-time ordering practices become more common, traditionally fixed resupply routes and schedules are increasingly unable to meet the demands of the supermarkets. Instead, we model this as a dynamic pickup and delivery problem with soft time windows (PDPSTW). We present the variable neighbourhood descent with memory (VNDM) hybrid metaheuristic (HM) and compare its performance against Q-learning (QL), binary exponential back off (BEBO) and random descent (RD) hyperheuristics on published benchmark and real-world instances of the PDPSTW. We find that VNDM consistently generates the highest quality solutions, with the fewest routes or shortest distances, amongst the methods tested. It is capable of finding the best known solutions to 55 of 176 published benchmarks as well as producing the best results on our real-world data set, supplied by Transfaction Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []