13C-Carrier DNA Shortens the Incubation Time Needed To Detect Benzoate-Utilizing Denitrifying Bacteria by Stable-Isotope Probing

2005 
The active bacterial community able to utilize benzoate under denitrifying conditions was elucidated in two coastal sediments using stable-isotope probing (SIP) and nosZ gene amplification. The SIP method employed samples from Norfolk Harbor, Virginia, and a Long-Term Ecosystem Observatory (no. 15) off the coast of Tuckerton, New Jersey. The SIP method was modified by use of archaeal carrier DNA in the density gradient separation. The carrier DNA significantly reduced the incubation time necessary to detect the 13C-labeled bacterial DNA from weeks to hours in the coastal enrichments. No denitrifier DNA was found to contaminate the archaeal 13C-carrier when [12C]benzoate was used as a substrate in the sediment enrichments. Shifts in the activity of the benzoate-utilizing denitrifying population could be detected throughout a 21-day incubation. These results suggest that temporal analysis using SIP can be used to illustrate the initial biodegrader(s) in a bacterial population and to document the cross-feeding microbial community.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    89
    Citations
    NaN
    KQI
    []