Observing wave/particle duality of light using topological charge

2018 
Wave particle duality, also called complementarity, is deeply rooted in the heart of quantum theory. It is fully exemplified in the famous Wheeler's delayed choice experiment where the choice of the wave nature (ability to interfere) or the particle like behavior (path distinguishability) is introduced a posteriori. We perform here a delayed choice experiment in a Mach-Zehnder interferometer, using a classical laser beam and twisted light in a given mode. We entangle the polarization and the twisted internal degrees of freedom, with the which-path-information external degree of freedom of the beam. The particle behavior of light arises from the quantization of the orbital angular momentum. It is demonstrated from torque and light power measurements within 10% accuracy. We then experimentally evidence that the particle or wave behavior of light can be chosen a posteriori, even after the light has left the interferometer, at the moment of the detection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []