De-aliasing for signal restoration in Propeller MR imaging

2017 
Abstract Purpose Objects falling outside of the true elliptical field-of-view (FOV) in Propeller imaging show unique aliasing artifacts. This study proposes a de-aliasing approach to restore the signal intensities in Propeller images without extra data acquisition. Materials and methods Computer simulation was performed on the Shepp-Logan head phantom deliberately placed obliquely to examine the signal aliasing. In addition, phantom and human imaging experiments were performed using Propeller imaging with various readouts on a 3.0 Tesla MR scanner. De-aliasing using the proposed method was then performed, with the first low-resolution single-blade image used to find out the aliasing patterns in all the single-blade images, followed by standard Propeller reconstruction. The Propeller images without and with de-aliasing were compared. Results Computer simulations showed signal loss at the image corners along with aliasing artifacts distributed along directions corresponding to the rotational blades, consistent with clinical observations. The proposed de-aliasing operation successfully restored the correct images in both phantom and human experiments. Conclusion The de-aliasing operation is an effective adjunct to Propeller MR image reconstruction for retrospective restoration of aliased signals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []