Phototransformation of 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in Natural Waters: Important Roles of Dissolved Organic Matter and Chloride Ion

2018 
Novel brominated flame retardants (NBFRs) have become ubiquitous emerging organic pollutants. However, little is known about their transformation in natural waters. In this study, aquatic photochemical behavior of a representative NBFR, 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), was investigated by simulated sunlight irradiation experiment. Results show that DPTE can undergo direct photolysis (apparent quantum yield 0.008 ± 0.001) and hydroxyl radical (·OH) initiated oxidation (second order reaction rate constant 2.4 × 109 M–1·s–1). Dissolved organic matter (DOM) promotes the photodegradation due to generation of excited triplet DOM and ·OH. Two chlorinated intermediates were identified in the photodegradation of DPTE in seawaters. Density functional theory calculation showed that ·Cl or ·Cl2– addition reactions on C–Br sites of the phenyl group and H-abstraction reactions from the propyl group are main reaction pathways of DPTE with the chlorine radicals. The ·Cl or ·Cl2– addition proceeds via ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    39
    Citations
    NaN
    KQI
    []