Applications of Molecular Markers to Develop Resistance Against Abiotic Stresses in Wheat

2019 
Innovations had come into being in the field of plant breeding with the development and advancement of molecular marker techniques by the end of the twentieth century. Advancement in molecular markers for sequencing techniques has led to improvements in crop production. Amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism, random amplified polymorphic DNA, and microsatellite markers are being used in the fields of molecular characterization, describing hybrid vigor, marker-assisted selection, abiotic stress tolerance, and genetic distance range. Numerous troubles that a user can face throughout marker application gametogenesis have also been discussed. Germplasm characterization and marker-mediated varietal fingerprinting seemed very ordinary and have many prevalent applications with AFLPs and simple sequence repeats (SSRs). SSR markers are known to be applicable and suitable techniques for molecular characterization owing to their low price, simplicity, and the lack of radio-isotope demand. Preventing hybrid vigor seemed very problematic, with a slight victory because of the absence of a simplistic marker technique that may categorically classify the hybrids, community, and offspring. A marker-assisted selection of valuable characters is very effective after molecular characterization, whereas for measurable traits, mainly disease-tolerant genes and quantitative trait loci for abiotic stress resistance, the success is inadequate. It is estimated that the implementation of molecular markers will remain limited in such fields until gene-specific markers exist and the price of the markers study is decreased markedly. This chapter discusses the possible responsibility of molecular markers in developing abiotic stress-resistant wheat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    171
    References
    8
    Citations
    NaN
    KQI
    []