Real-time Detection and Analysis of Damage in High-performance Concrete under Cyclic Bending
2010
In order to quantitatively evaluate the damage level in high-performance concrete (HPC) with pozzolanic minerals under constant amplitude cyclic loads, three methods for real-time damage detection are employed in the present work, i.e., dynamic modulus instrument, real-time strain collector, and digital speckle correlative method (DSCM). Six mechanical parameters at different numbers of loading cycles are real-time captured by these three methods. For a maximum applied fatigue stress equal to 70% of the static flexural strength, a cohesive crack is detected on the specimen surface by the DSCM system from 10% of concrete fatigue life. The nucleation and propagation of the cohesive crack is reflected by the change of the strain concentration zone in 2-dimensional strain fields. The experimental results show that the admixtures of Class F Fly Ash (FA) and S95 Ground Granulated Blast-furnace Slag (GGBS) in high proportions increase the strain and cohesive-crack opening displacement as well as remarkably improve the fatigue performance of HPC.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
3
Citations
NaN
KQI