Chemical, Physical, and Biological Factors Shape Littoral Invertebrate Community Structure in Coal-Mining End-Pit Lakes
2017
Aquatic invertebrates form the base of the consumer food web in lakes. In coal-mining end-pit lakes, invertebrates are exposed to an environment with potentially challenging physical and chemical features. We hypothesized that the physical and chemical features of end-pit lakes reduce critical littoral habitat and thus reduce invertebrate diversity, thereby limiting the potential for these lakes to be naturalized. We used a multivariate approach using principle component analysis and redundancy analysis to study relationships between invertebrate community structure, habitat features, and water quality in five end-pit lakes and five natural lakes in the Rocky Mountain foothills of west-central Alberta, Canada. Results show a significantly different invertebrate community structure was present in end-pit lakes as compared with reference lakes in the same region, which could be accounted for by water hardness, conductivity, slope of the littoral zone, and phosphorus concentrations. Habitat diversity in end-pit lakes was also limited, cover provided by macrophytes was scarce, and basin slopes were significantly steeper in pit lakes. Although water chemistry is currently the strongest influencing factor on the invertebrate community, physical challenges of habitat homogeneity and steep slopes in the littoral zones were identified as major drivers of invertebrate community structure. The addition of floating wetlands to the littoral zone of existing pit lakes can add habitat complexity without the need for large-scale alterations to basing morphology, while impermeable capping of waste-rock and the inclusion of littoral habitat in the planning process of new pit lakes can improve the success of integrating new pit lakes into the landscape.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
83
References
8
Citations
NaN
KQI