Study of PLGA microspheres loaded with pOsx/PEI nanoparticles for repairing bone defects in vivo and in vitro.

2020 
BACKGROUND: Autogenous or allogenic bone transplantation is the main treatment for bone defects and nonunions. However, the shortcomings of autogenous or allogenic bone transplantation limit its wide application in clinical use. OBJECTIVES: This study investigated the effect of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with pOsterix (pOsx)/polyethylenimine (PEI) nanoparticles in repairing bone defects and explored its mechanism. MATERIAL AND METHODS: Poly(lactic-co-glycolic acid) microspheres loaded with pOsx/PEI nanoparticles were constructed. The Osx transfection effect was detected by fluorescence quantitative PCR and Western blotting methods. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide (MTT) and flow cytometry methods were used to detect cell proliferation. The collagen I (Col-1), osteopontin (OPN) and osteocalcin (OC) expression levels were detected using real-time polymerase chain reaction (RT-PCR) and Western blotting methods. Bone defect model was constructed. Bone repair was detected using X-ray, hematoxylin and eosin (H&E) staining, and Mason staining methods. RESULTS: PLGA@pOsx/PEI has transfection effect both in vitro and in vivo, does not affect cell proliferation and is safe for cells. PLGA@pOsx/PEI could promote the expression of Col-1, OPN and OC in vitro and in vivo. PLGA@pOsx/PEI could promote osteogenesis in vivo. CONCLUSIONS: PLGA@pOsx/PEI with high Osx expression could promote the expression of OC, OPN, and COL-I. PLGA@pOsx/PEI can be used as a material for repairing bone defects and can promote bone formation. These results provide a theoretical and practical basis for its further clinical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []