Multiplex loop-mediated isothermal amplification-based lateral flow dipstick for simultaneous detection of 3 food-borne pathogens in powdered infant formula

2020 
ABSTRACT In this study, we established a rapid, simple, and sensitive method for visual and point-of-care detection of Salmonella spp., Cronobacter spp., and Staphylococcus aureus in powdered infant formula (PIF) based on multiplex loop-mediated isothermal amplification (mLAMP) combined with lateral flow dipstick (LFD). Three different species-specific target genes, siiA of Salmonella spp., internal transcribed space (ITS) of Cronobacter spp., and nuc of Staph. aureus, were applied in the mLAMP with biotin-, digoxin-, and Texas Red-modified forward inner primers and fluorescein isothiocyanate (FITC)-modified backward inner primers. After mLAMP, a large number of modified amplicons were detected with LFD; one end of the amplicon was conjugated to the anti-FITC antibody on gold nanoparticles and the other end to streptavidin (anti-digoxin or anti-Texas Red antibody) on test lines. Visual inspection of the device relies on the presence of a red band formed by accumulation of sandwich composites. The detection limits of this mLAMP-LFD assay for Salmonella spp., Cronobacter spp., and Staph. aureus in PIF without enrichment were 4.2, 2.6, and 3.4 cfu/g, respectively. The whole method can be completed in less than 1 h. Thus, mLAMP-LFD is a rapid and efficient method for simultaneously detecting Salmonella spp., Cronobacter spp., and Staph. aureus in PIF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    15
    Citations
    NaN
    KQI
    []