Looking for protein expression signatures in European eel peripheral blood mononuclear cells after in vivo exposure to perfluorooctane sulfonate and a real world field study.

2014 
Abstract The decline of European eel population can be attributed to many factors such as pollution by xenobiotics present in domestic and industrial effluents. Perfluorooctane sulfonate (PFOS) is a ubiquitous compound of a particular concern in Europe. PFOS can reach high concentrations in tissues of organisms and many toxic effects have been reported in fish. This study aimed at evaluating the toxicological effects of PFOS in European eel peripheral blood mononuclear cells (PBMCs) at the protein expression level. To identify proteins whose expression was modified by PFOS, we performed a proteomic analysis on the post-nuclear fraction of PBMCs after a chronic exposure (28 days) of yellow eels to zero, 1 or 10 μg/L PFOS. This in vivo study was completed by a proteomic field study on eels sampled in Belgian rivers presenting different PFOS pollution degrees. Proteins were separated by two-dimensional in-gel electrophoresis (2D-DIGE) to compare the post-nuclear fraction of PBMCs from the reference group with cells from fish exposed to the pollutant of interest. On the 28 spots that were significantly (p  in vivo experiment, a total of 17 different proteins were identified using nano-LC ESI-MS/MS and the Peptide and Protein Prophet of Scaffold software. In the field experiment, 18 significantly (p  in vivo and in situ experiments: plastin-2, alpha-enolase and glyceraldehyde 3-phosphate dehydrogenase. Comparing the results with a previous study, plastin-2 and alpha-enolase were also been found to be affected after in vitro exposure of PBMCs during 48 h to either 10 μg or 1 mg PFOS/L. Potential use of these proteins as biomarkers of PFOS exposure in European eel could indicate early warning signals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    13
    Citations
    NaN
    KQI
    []