Quantum topology identification with deep neural networks and quantum walks.

2018 
Topologically ordered materials may serve as a platform for new quantum technologies such as fault-tolerant quantum computers. To fulfil this promise, efficient and general methods are needed to discover and classify new topological phases of matter. We demonstrate that deep neural networks augmented with external memory can use the density profiles formed in quantum walks to efficiently identify properties of a topological phase as well as phase transitions. On a trial topological ordered model, our method's accuracy of topological phase identification reaches 97% and is shown to be robust to noise on the data. Our approach is generally applicable and may be used for topology identification with a variety of quantum materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    1
    Citations
    NaN
    KQI
    []