Feasibility Check: Can Audio Be a Simple Alternative to Force-Based Feedback for Needle Guidance?

2020 
Accurate needle placement is highly relevant for puncture of anatomical structures. The clinician’s experience and medical imaging are essential to complete these procedures safely. However, imaging may come with inaccuracies due to image artifacts. Sensor-based solutions have been proposed for acquiring additional guidance information. These sensors typically require to be embedded in the instrument tip, leading to direct tissue contact, sterilization issues, and added device complexity, risk, and cost. Recently, an audio-based technique has been proposed for “listening” to needle tip-tissue interactions by an externally placed sensor. This technique has shown promising results for different applications. But the relation between the interaction event and the generated audio excitation is still not fully understood. This work aims to study this relationship, using a force sensor as a reference, by relating events and dynamical characteristics occurring in the audio signal with those occurring in the force signal. We want to show that dynamical information that a well-known sensor as force can provide could also be extracted from a low-cost and simple sensor such as audio. In this aim, the Pearson coefficient was used for signal-to-signal correlation between extracted audio and force indicators. Also, an event-to-event correlation between audio and force was performed by computing features from the indicators. Results show high values of correlation between audio and force indicators in the range of 0.53 to 0.72. These promising results demonstrate the usability of audio sensing for tissue-tool interaction and its potential to improve telemanipulated and robotic surgery in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []