Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis

2017 
Tissue morphogenesis relies on the production of active cellular forces. Understanding how such forces are mechanically converted into cell shape changes is essential to our understanding of morphogenesis. Here we use Myosin II pulsatile activity during Drosophila embryogenesis to study how transient forces generate irreversible cell shape changes. Analyzing the dynamics of junction shortening and elongation resulting from Myosin II pulses, we find that long pulses yield less reversible deformations, typically a signature of dissipative mechanics. This is consistent with a simple viscoelastic description, which we use to model individual shortening and elongation events. The model predicts that dissipation typically occurs on the minute timescale, a timescale commensurate with that of force generation by Myosin II pulses. We test this estimate by applying time-controlled forces on junctions with optical tweezers. Our results argue that active junctional deformation is stabilized by dissipation. Hence, tissue morphogenesis requires coordination between force generation and dissipation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []